Exercise 10

Solve Example 1.6.1 with the initial data

$$
\begin{aligned}
& \text { (i) } f(x)=\left\{\begin{array}{ll}
\frac{h x}{a} & \text { if } 0 \leq x \leq a, \\
h(\ell-x) /(\ell-a) & \text { if } a \leq x \leq \ell,
\end{array} \text { and } g(x)=0 .\right. \\
& \text { (ii) } f(x)=0 \quad \text { and } g(x)= \begin{cases}\frac{u_{0} x}{a} & \text { if } 0 \leq x \leq a, \\
u_{0}(\ell-x) /(\ell-a) & \text { if } a \leq x \leq \ell .\end{cases}
\end{aligned}
$$

Solution

The initial boundary value problem that needs to be solved is the following:

$$
\begin{array}{ll}
u_{t t}=c^{2} u_{x x}, & 0<x<\ell, t>0 \\
u(0, t)=u(\ell, t)=0, & t>0 \\
u(x, 0)=f(x), & 0 \leq x \leq \ell \\
u_{t}(x, 0)=g(x), & 0 \leq x \leq \ell .
\end{array}
$$

The PDE and the boundary conditions are linear and homogeneous, which means that the method of separation of variables can be applied. Assume a product solution of the form, $u(x, t)=X(x) T(t)$, and substitute it into the PDE and boundary conditions to obtain

$$
\begin{gather*}
X(x) T^{\prime \prime}(t)=c^{2} X^{\prime \prime}(x) T(t) \quad \rightarrow \quad \frac{T^{\prime \prime}(t)}{c^{2} T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=k \tag{1.10.1}\\
u(0, t)=0 \quad \rightarrow \quad X(0) T(t)=0 \quad \rightarrow \quad X(0)=0 \\
u(\ell, t)=0 \quad \rightarrow \quad X(\ell) T(t)=0 \quad \rightarrow \quad X(\ell)=0
\end{gather*}
$$

The left side of equation (1.10.1) is a function of t, and the right side is a function of x. Therefore, both sides must be equal to a constant. Values of this constant and the corresponding functions that satisfy the boundary conditions are known as eigenvalues and eigenfunctions, respectively. We have to examine three special cases: the case where the eigenvalues are positive ($k=\mu^{2}$), the case where the eigenvalue is zero $(k=0)$, and the case where the eigenvalues are negative ($k=-\lambda^{2}$). The solution to the PDE will be a linear combination of all product solutions.

Case I: Consider the Positive Eigenvalues $\left(k=\mu^{2}\right)$

Solving the ordinary differential equation in (1.10.1) for $X(x)$ gives

$$
\begin{aligned}
X^{\prime \prime}(x) & =\mu^{2} X(x), \quad X(0)=0, X(\ell)=0 . \\
X(x) & =C_{1} \cosh \mu x+C_{2} \sinh \mu x \\
X(0) & =C_{1} \quad \rightarrow \quad C_{1}=0 \\
X(\ell) & =C_{2} \sinh \mu \ell=0 \quad \rightarrow \quad C_{2}=0 \\
X(x) & =0
\end{aligned}
$$

Positive values of k lead to the trivial solution, $X(x)=0$. Therefore, there are no positive eigenvalues and no associated product solutions.

Case II: Consider the Zero Eigenvalue $(k=0)$

Solving the ordinary differential equation in (1.10.1) for $X(x)$ gives

$$
\begin{aligned}
X^{\prime \prime}(x) & =0, \quad X(0)=0, \quad X(\ell)=0 . \\
X(x) & =C_{1} x+C_{2} \\
X(0) & =C_{2} \quad \rightarrow \quad C_{2}=0 \\
X(\ell) & =C_{1} \ell=0 \quad \rightarrow \quad C_{1}=0 \\
X(x) & =0 .
\end{aligned}
$$

$k=0$ leads to the trivial solution, $X(x)=0$. Therefore, zero is not an eigenvalue, and there's no product solution associated with it.

Case III: Consider the Negative Eigenvalues $\left(k=-\lambda^{2}\right)$
Solving the ordinary differential equation in (1.10.1) for $X(x)$ gives

$$
\begin{aligned}
& \quad X^{\prime \prime}(x)=-\lambda^{2} X(x), \quad X(0)=0, X(\ell)=0 . \\
& X(x)=C_{1} \cos \lambda x+C_{2} \sin \lambda x \\
& X(0)=C_{1} \quad \rightarrow \quad C_{1}=0 \\
& X(\ell)=C_{2} \sin \lambda \ell=0 \\
& \sin \lambda \ell=0 \quad \rightarrow \quad \lambda \ell=n \pi, n=1,2, \ldots \\
& X(x)=C_{2} \sin \lambda x
\end{aligned} \quad \lambda_{n}=\frac{n \pi}{\ell}, n=1,2, \ldots .
$$

The eigenvalues are $k=-\lambda_{n}^{2}=-\left(\frac{n \pi}{\ell}\right)^{2}$, and the corresponding eigenfunctions are $X_{n}(x)=\sin \frac{n \pi x}{\ell}$. Solving the ordinary differential equation for $T(t), T^{\prime \prime}(t)=-c^{2} \lambda^{2} T(t)$, gives $T(t)=A \cos c \lambda t+B \sin c \lambda t$. The product solutions associated with the negative eigenvalues are thus $u_{n}(x, y)=X_{n}(x) T_{n}(t)=\left(A_{n} \cos c \lambda_{n} t+B_{n} \sin c \lambda_{n} t\right) \sin \lambda_{n} x$ for $n=1,2, \ldots$.

According to the principle of superposition, the solution to the PDE is a linear combination of all product solutions:

$$
u(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos c \frac{n \pi}{\ell} t+B_{n} \sin c \frac{n \pi}{\ell} t\right) \sin \frac{n \pi}{\ell} x
$$

The coefficients, A_{n} and B_{n}, are determined from the initial conditions. Setting $t=0$ results in an equation for A_{n}.

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{\ell}=f(x)
$$

Multiplying both sides of the equation by $\sin \frac{m \pi x}{\ell}$ (m being a positive integer) gives

$$
\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell}=f(x) \sin \frac{m \pi x}{\ell}
$$

Integrating both sides with respect to x from 0 to ℓ gives

$$
\int_{0}^{\ell} \sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell} d x=\int_{0}^{\ell} f(x) \sin \frac{m \pi x}{\ell} d x
$$

$$
\begin{gathered}
\sum_{n=1}^{\infty} A_{n} \underbrace{\int_{0}^{\ell} \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell} d x}_{=\frac{\ell}{2} \delta_{n m}}=\int_{0}^{\ell} f(x) \sin \frac{m \pi x}{\ell} d x \\
A_{n}\left(\frac{\ell}{2}\right)=\int_{0}^{\ell} f(x) \sin \frac{n \pi x}{\ell} d x \\
A_{n}=\frac{2}{\ell} \int_{0}^{\ell} f(x) \sin \frac{n \pi x}{\ell} d x
\end{gathered}
$$

In order to find B_{n} we have to use the second initial condition, so we take the first derivative of $u(x, t)$ with respect to t.

$$
\begin{gathered}
u_{t}(x, t)=\sum_{n=1}^{\infty}\left(-A_{n} c \frac{n \pi}{\ell} \sin c \frac{n \pi}{\ell} t+B_{n} c \frac{n \pi}{\ell} \cos c \frac{n \pi}{\ell} t\right) \sin \frac{n \pi x}{\ell} \\
u_{t}(x, 0)=\sum_{n=1}^{\infty}\left(B_{n} c \frac{n \pi}{\ell}\right) \sin \frac{n \pi x}{\ell}=g(x)
\end{gathered}
$$

Multiplying both sides of the equation by $\sin \frac{m \pi x}{\ell}$ (m being a positive integer) gives

$$
\sum_{n=1}^{\infty}\left(B_{n} c \frac{n \pi}{\ell}\right) \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell}=g(x) \sin \frac{m \pi x}{\ell}
$$

Integrating both sides with respect to x from 0 to ℓ gives

$$
\begin{gathered}
\int_{0}^{\ell} \sum_{n=1}^{\infty}\left(B_{n} c \frac{n \pi}{\ell}\right) \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell} d x=\int_{0}^{\ell} g(x) \sin \frac{m \pi x}{\ell} d x \\
\sum_{n=1}^{\infty}\left(B_{n} c \frac{n \pi}{\ell}\right) \underbrace{\int_{0}^{\ell} \sin \frac{n \pi x}{\ell} \sin \frac{m \pi x}{\ell} d x}_{=\frac{\ell}{2} \delta_{n m}}=\int_{0}^{\ell} g(x) \sin \frac{m \pi x}{\ell} d x \\
\left(B_{n} c \frac{n \pi}{\ell}\right) \frac{\ell}{2}=\int_{0}^{\ell} g(x) \sin \frac{n \pi x}{\ell} d x \\
B_{n}=\frac{2}{c n \pi} \int_{0}^{\ell} g(x) \sin \frac{n \pi x}{\ell} d x
\end{gathered}
$$

Now that we know the general solution of the PDE and the coefficients, we can use the initial data given in the problem statement.

$$
\text { (i) } f(x)=\left\{\begin{array}{ll}
\frac{h x}{a} & \text { if } 0 \leq x \leq a, \\
h(\ell-x) /(\ell-a) & \text { if } a \leq x \leq \ell,
\end{array} \quad \text { and } g(x)=0 .\right.
$$

The coefficients evaluate to

$$
\begin{aligned}
A_{n} & =\frac{2}{\ell} \int_{0}^{\ell} f(x) \sin \frac{n \pi x}{\ell} d x \\
& =\frac{2}{\ell}\left(\int_{0}^{a} \frac{h x}{a} \sin \frac{n \pi x}{\ell} d x+\int_{a}^{\ell} \frac{h(\ell-x)}{\ell-a} \sin \frac{n \pi x}{\ell} d x\right) \\
& =\frac{2}{\ell}\left\{\left[\frac{h \ell}{a n^{2} \pi^{2}}\left(\ell \sin \frac{n \pi a}{\ell}-a n \pi \cos \frac{n \pi a}{\ell}\right)\right]+\left[\frac{h \ell}{(\ell-a) n^{2} \pi^{2}}\left(\ell \sin \frac{n \pi a}{\ell}+(\ell-a) n \pi \cos \frac{n \pi a}{\ell}\right)\right]\right\} \\
& =\frac{2 h \ell^{2}}{a(\ell-a) n^{2} \pi^{2}} \sin \frac{n \pi a}{\ell} \\
B_{n} & =\frac{2}{c n \pi} \int_{0}^{\ell} g(x) \sin \frac{n \pi x}{\ell} d x \\
& =0 .
\end{aligned}
$$

So the solution to the initial boundary value problem (i) is

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{2 h \ell^{2}}{a(\ell-a) n^{2} \pi^{2}} \sin \frac{n \pi a}{\ell} \cos c \frac{n \pi}{\ell} t \sin \frac{n \pi}{\ell} x .
$$

$$
\text { (ii) } f(x)=0 \quad \text { and } \quad g(x)= \begin{cases}\frac{u_{0} x}{a} & \text { if } 0 \leq x \leq a, \\ u_{0}(\ell-x) /(\ell-a) & \text { if } a \leq x \leq \ell\end{cases}
$$

With these initial data the coefficients evaluate to

$$
\begin{aligned}
A_{n} & =\frac{2}{\ell} \int_{0}^{\ell} f(x) \sin \frac{n \pi x}{\ell} d x \\
& =0 \\
B_{n} & =\frac{2}{c n \pi} \int_{0}^{\ell} g(x) \sin \frac{n \pi x}{\ell} d x \\
& =\frac{2}{c n \pi}\left(\int_{0}^{a} \frac{u_{0} x}{a} \sin \frac{n \pi x}{\ell} d x+\int_{a}^{\ell} \frac{u_{0}(\ell-x)}{\ell-a} \sin \frac{n \pi x}{\ell} d x\right) \\
& =\frac{2}{c n \pi}\left\{\left[\frac{u_{0} \ell}{a n^{2} \pi^{2}}\left(\ell \sin \frac{n \pi a}{\ell}-a n \pi \cos \frac{n \pi a}{\ell}\right)\right]+\left[\frac{u_{0} \ell}{(\ell-a) n^{2} \pi^{2}}\left(\ell \sin \frac{n \pi a}{\ell}+(\ell-a) n \pi \cos \frac{n \pi a}{\ell}\right)\right]\right\} \\
& =\frac{2 u_{0} \ell^{3}}{a c(\ell-a) n^{3} \pi^{3}} \sin \frac{n \pi a}{\ell} .
\end{aligned}
$$

So the solution to the initial boundary value problem (ii) is

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{2 u_{0} \ell^{3}}{a c(\ell-a) n^{3} \pi^{3}} \sin \frac{n \pi a}{\ell} \sin c \frac{n \pi}{\ell} t \sin \frac{n \pi}{\ell} x .
$$

